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1. INTRODUCTION

In the design of suspension bridges, dynamical e!ects such as wind, tra$c, and earthquake
play a signi"cant role, so vibrational analysis becomes inevitable. Possible vibrational
modes must be determined and corresponding natural frequencies should be calculated as
a "rst step. The natural frequencies of suspension bridges have been calculated by several
researchers [1}7]. The free natural vibrational modes of a suspension bridge may be
classi"ed as vertical, torsional, and lateral. The real motion of the bridge is a coupled
combination of these modes. The most e!ective, and thus most important, of these modes
are vertical and torsional. The equations of coupled vertical and torsional motion have
a non-linear form and are very complicated. In order to substitute a basis for non-linear
analysis, a preliminary linear analysis is considered in this study. As the vertical and
torsional equations have similar forms, by solving the vertical equation, one also obtains
the solution of the torsional equation.
When the equation of motion is solved with the given boundary conditions,

transcendental equations yielding the natural frequencies are obtained. The equation
yielding the frequencies of asymmetric modes has a simple form. In contrast, the equation
yielding the frequencies of symmetric modes is very complicated. The natural frequencies of
symmetric modes can be found from this equation by using root "nding algorithms. In this
study, we seek for the relation between the "rst three natural frequencies and the physical
parameters of a suspension bridge; namely, span length, moment of inertia of the bridge
cross-section, initial horizontal component of cable tension, dead weight of the bridge per
unit length of the span, cables' cross-sectional area, moduli of elasticity of the bridge deck
and the cables. The "rst three natural frequencies are calculated using the
Newton}Raphson method for di!erent physical parameters. This technique involving
step-by-step numerical iteration for each frequency and group of physical parameters,
requires a relatively long computational time. Manual intervention to the program may be
needed, since iterations do not converge for all estimated values of the roots. Alternatively,
the calculated key values are used in training a multi-layer, feed-forward, back-propagation
arti"cial neural network (ANN) algorithm until the per cent error is below the required
value. Then using the trained algorithm, for a given input data set, which can be a huge
matrix, natural frequencies are retrieved immediately to within 1)02% error. The ANN
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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algorithm does not calculate the frequencies one by one as in the case of the
Newton}Raphson algorithm, instead it gives the output in a tabular form without any
convergence problems. Finally, the variation of the natural frequencies of the vertical
symmetric modes with the above mentioned physical parameters are investigated by using
the trained ANN algorithm. The results of the ANN and Newton}Raphson methods are
compared and it is found that the ANN modelling can be e!ectively used as
a supplementary technique to conventional numerical procedures in vibration problems.
For some other examples of the ANN applications to structural mechanics, the reader is
referred to the previous work [8}12].

2. FORMULATION OF THE PROBLEM

The three-span suspension bridge shown in Figure 1 is considered. The non-linear
dimensionless equations of motion were derived using Hamilton's principle in reference
[13]. The linearized equation of vertical motion is given by
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where v is the vertical displacement of the bridge deck, I
�
is the moment of inertia of the

bridge cross-section, H
�

is the initial horizontal component of cable tension, S
�
is

a parameter related to the cables' cross-sectional area, virtual length, and moduli of
elasticity of the bridge deck and cables; w

�
is the dead weight of the bridge per unit length of

the span; l
�
is the length of the ith span; and i represents (i"1, 2, 3) the number of span. The

above parameters are all dimensionless. The dot denotes di!erentiation with respect to the
non-dimensional time t and the prime denotes di!erentiation with respect to the spatial
variable x. The dimensionless quantities are related to the dimensional ones (denoted by
asterisks) through the following relations:
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where ¸ is a characteristic length used for non-dimensionalization, E
�
and I

�
are,

respectively, the modulus of elasticity and the moment of inertia of the bridge cross-section,
g is the gravitational acceleration, E

�
and A

�
are, respectively, the cables' modulus of

ealsticity and the cross-sectional area, ¸
�
is the virtual length (de"ned in reference [7]). The
Figure 1. A three-span suspension bridge model.
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boundary conditions are:
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The solution of equation (1) with the boundary conditions (3) can be expressed in the form

v
�
(x, t)"(A cos�t#B sin�t)>

�
(x), (4)

where � is the natural frequency. Substituting equation (4) into equation (1) yields
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At this point, there are two independent parts of the problem to be solved separately. For
the asymmetric modes, the integral term in equation (5) is zero and the natural frequencies
can be calculated with ease. However, for the symmetric modes, since there is an interaction
between the center and side spans, the integral term is not zero and the transcendental
equation yielding the natural frequencies of symmetric modes is complicated:
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In this equation

�
�
"�

H
�
l�
�

I
�
��1#

I
�
��

H�
�

!1� , (7)

�
�
"�

H
�
l�
�

I
�
��1#

I
�
��

H�
�

#1� . (8)

The transcendental equation (6) is solved using the Newton}Raphson procedure for
various physical parameters. This is a lengthy process since the algorithm may cause
convergence problems. Only the "rst three natural frequencies are calculated.

3. APPLICATION OF THE ANN ALGORITHM

In this section, an alternative to conventional numerical techniques is presented by
employing an ANN algorithm with a multi-layer, feed-forward, back-propagation
architecture. The multi-layer perceptron has an input layer, two hidden layers, and an
output layer. The input vector representing the pattern to be recognized is incident on the
input layer and is distributed to subsequent hidden layers, and "nally to the output layer via
weighted connections. Each neuron in the network operates by taking the sum of its
weighted inputs and passing the result through a non-linear activation function (transfer
function). In this study, the sigmoid function is used as the transfer function. The
momentum and learning rate values are taken as 0)9 and 0)7, respectively. These values are
found by trial and error. A back-propagation algorithm is used in the optimization in which
the weights are modi"ed. Although 5000 iterations yield reasonable results, to achieve
a satisfactory high precision learning rate, 50 000 iterations have been performed in training
the algorithm. The ANN architecture used is a 5 : 12 : 12 : 3 multi-layer architecture as
shown in Figure 2.
The problem of "nding the frequencies of the system can be treated as an input/output

process with an unknown transfer function. There are six-dimensionless parameters in



Figure 2. The ANN architecture used in the analysis.

TABLE 1

¹he values used in input patterns prepared for the training of ANN

l 2)5, 4)2, 5)8, 7)5
H

�
3�10�	, 8�10�	, 15�10�	, 21�10�	, 27)5�10�	, 39�10�	, 50�10�	

w
�

0)80, 0)64, 0)48, 0)32, 0)22
I
�

6�10���, 18�10���, 30�10���, 40�10���
S
�

3�10�
, 8�10�
, 14�10�
, 20�10�
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equation (1); namely l
�
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�
. The ratio of side-to-center spans in

three-span bridges is generally �
�
, so that the length of the side span is approximated to

one-third of the center span (l"l
�
"3l

�
). Thus, the number of input parameters is reduced

to "ve whereas the corresponding output values are the "rst three natural frequencies.
While preparing input patterns using these values, instead of taking a combination of all
values, it is desired to prepare meaningful sets by considering their physical correspondings.
In other words, consistent and realistic values are selected. For example, moment of inertia
and the cable forces for short span bridges are assumed to have rather low values; whereas,
the values are increased depending on the increasing span length. Increasing the input
values decreases the error in training; however, preparation and training of the data take
a very long time in that case. Considering these criteria, a total of 493 input patterns are
prepared. The input values used herein are given in Table 1.
In Figure 3, the mean square errors (MSE) in training versus number of iteration

are presented. The MSE dropped drastically after 5000 iterations. Training has been
continued up to 50 000 iterations for higher precision, since this task should be done once
only. The training phase required an hour or so on a PC with Pentium 350 MHz
microprocessor.



Figure 3. MSE versus number of iterations for training natural frequencies.

TABLE 2

Comparison of the results of the ANN and N}R methods for test values

Newton}Raphson ANN

N l H
�

w
�
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�

S
�

�
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�

�
�

�
�

�
�

1 3)0 5�10�	 0)60 10�10��� 5�10�
 1)296 2)978 4)315 1)306 2)945 4)401
2 3)8 15�10�	 0)44 20�10��� 15�10�
 1)057 2)667 3)086 1)075 2)664 3)114
3 4)0 20�10�	 0)56 30�10��� 10�10�
 0)888 2)209 2)593 0)906 2)234 2)613
4 4)5 26�10�	 0)50 16�10��� 12�10�
 0)766 1)840 2)191 0)767 1)862 2)199
5 4)8 15�10�	 0)60 34�10��� 10�10�
 0)750 2)021 2)828 0)766 2)022 2)893
6 5)0 20�10�	 0)40 14�10��� 15�10�
 0)779 1)853 2)515 0)776 1)845 2)529
7 5)2 30�10�	 0)30 20�10��� 13�10�
 0)811 1)797 2)109 0)812 1)794 2)080
8 5)5 25�10�	 0)24 16�10��� 18�10�
 0)869 2)003 2)259 0)871 2)000 2)254
9 6)0 16)5�10�	 0)30 20�10��� 12�10�
 0)755 1)825 2)380 0)752 1)819 2)376
10 6)2 21�10�	 0)28 40�10��� 10�10�
 0)758 1)847 2)094 0)756 1)835 2)100
11 6)5 22)5�10�	 0)24 28�10��� 13�10�
 0)759 1)812 2)087 0)751 1)807 2)085
12 6)8 36�10�	 0)28 10�10��� 15�10�
 0)649 1)453 1)857 0)639 1)449 1)828
13 7)0 33�10�	 0)24 24�10��� 17�10�
 0)692 1)594 1)971 0)681 1)604 1)937
14 7)2 36�10�	 0)32 30�10��� 10�10�
 0)585 1)352 1)689 0)575 1)351 1)700
15 7)4 32)5�10�	 0)24 36�10��� 8�10�
 0)636 1)422 1)633 0)630 1)423 1)636
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After the training is completed, the results of the ANN and Newton}Raphson (N}R)
methods are compared for 15 test patterns. The input and output values for these patterns
are shown in Table 2.
In Table 3, average percentage errors for training and test values of ANN are given. In

general, a good agreement is observed. For the input values given in Table 1, the ANN
algorithm produced results with an average error of less than 0)85%. For the test values
given above, results are compared for both methods and it is found that the maximum error
is less than 1)02%. These values are shown in Table 3. From an engineering point of view,
these errors are considerably low.
It should be noted that the ANN requires a relatively long time in the training phase.

Once the training is completed, however, for a given matrix of input values, the output



TABLE 3

Average percentage errors for training and test values of ANN

�
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�
�
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Training values (%) 0)849 0)738 0)838
Test values (%) 1)011 0)442 0)878

Figure 4. Variation of natural frequency with the dimensionless parameter l. (NR *, ANN2)
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frequencies can be calculated at once and retrieved as an output matrix without any
convergence problems. In contrast, in the standard root "nding technique, manual
intervention may be necessary, since the algorithm may diverge and each root is calculated
one by one for di!erent frequencies and physical parameters. The total time required for an
operator of the computer would then be much higher in the standard case.

4. INVESTIGATION OF THE EFFECT OF PHYSICAL PARAMETERS ON THE NATURAL
FREQUENCIES

In this section, the e!ects of physical parameters on the natural frequencies are shown
graphically. The results of the Newton}Raphson method are also plotted to make
a comparison of the results of both methods. In Figures 4}8, the continuous lines represent
the results of the Newton}Raphson method, whereas the dotted lines represent those of the
ANN algorithm. A good match is observed between the methods.
In Figure 4, it is seen that the natural frequency decreases with increasing span length (l).

This variation becomes more pronounced in higher modes. Accordingly, the longer the
span length of the bridge, the higher will be the vibration period.
In Figure 5, variation of the natural frequency with the dimensionless parameter H

�
is

shown. This parameter is directly proportional to the cable tension and inversely
proportional the modulus of elasticity of the sti!ening structure. Therefore, as the initial
cable tension increases (or the modulus of elasticity of the sti!ening structure decreases), the
natural frequency decreases.



Figure 5. Variation of natural frequency with the dimensionless parameter H
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Figure 6. Variation of natural frequency with the dimensionless parameter w
�
. (NR *, ANN

2
) (l"4)0,

H
�
"20�10�	, I

�
"10�10���, S

�
"7�10�
).

602 LETTERS TO THE EDITOR
In Figure 6, variation of the natural frequency with the dimensionless parameter w
�
is

shown. This parameter represents the dead weight of the bridge. The graphs indicate that
increasing dead weight decreases the natural frequency in the "rst and third modes but have
a very slight e!ect in the second mode. Thus, it can be concluded that the natural frequency
is inversely proportional to the dead weight.
In Figure 7, variation of the natural frequency with the moment of inertia of the bridge

cross-section is shown. It is observed that increasingmoment of inertia increases the natural
frequency. This is more pronounced in higher modes.
Figure 8 shows the variation of the natural frequency with the dimensionless parameter

S
�
. This parameter is directly proportional to the cables' modulus of elasticity and

cross-sectional area and inversely proportional to the modulus of elasticity of the sti!ening
structure and virtual length. There is a very slight increase in the "rst and third modes
whereas the increase in the second mode is apparent. It may not be appropriate to make
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Figure 8. Variation of natural frequency with the dimensionless parameter S
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a generalization, yet one can conclude that the cables' modulus of elasticity and the
cross-sectional area have an increasing e!ect on the natural frequency of the bridge.

5. CONCLUDING REMARKS

The calculation of the natural frequencies of suspension bridges and the parameters
a!ecting the frequencies are studied. The exact values of the frequencies are calculated by
the Newton}Raphsonmethod. For each group of parameters, numerical analysis should be
repeated, a lengthy process which requires the convergence of iterations. When the initial
guesses are not close enough, the algorithm may diverge also. The method of ANN is used
alternatively to compute the natural frequencies quickly and with small errors. Key values
obtained by using the conventional analysis are used in training an ANN algorithm. After
training, the algorithm yielded results with considerably low errors.
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Then, the e!ects of physical parameters on the natural frequencies of suspension bridges
are investigated using ANN. It is observed that the most e!ective parameters are the span
length and the initial cable tension. The longer the span and the more the cable tension and
the dead weight, the lower is the natural frequency. On the other hand, increasing moment
of inertia, and the cables'modulus of elasticity and cross-sectional area slightly increases the
natural frequencies.
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